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The motion of buoyant transient cavities with non-condensible contents is 
investigated numerically using a boundary-integral method. The bubble contents are 
described by an adiabatic gas law. Motion is considered in the neighbourhood of a 
rigid boundary, in an axisymmetric geometry. We investigate whether the non- 
condensible contents will resist the formation of jets. It is found that jets form upon 
collapse and, in general, completely penetrate the bubble before it rebounds, but 
circumstances are identified under which the non-spherical bubble will rebound prior 
to this occurrence. In  these cases the bulk of the jet growth occurs upon rebound. 
Furthermore, the interaction between the buoyancy force causing jet formation 
upwards, and the Bjerknes attraction of the rigid boundary causing jet formation 
towards it,  is investigated and general principles discussed which allow the behaviour 
to be interpreted. The concept of the Kelvin impulse is utilized. 

1. Introduction 
The collapse of transient cavities adjacent to structures is a problem of considerable 

engineering significance. The collapse of a cavitation bubble near to a rigid boundary 
is accompanied by the formation of a high-speed liquid jet, directed towards the 
boundary. Experimental investigations (Tomita & Shima 1986) have demonstrated 
the pitting of the surface caused by this phenomenon. A problem of larger scale, yet 
similar fluid mechanics, is that of the collapse of the bubble produced by an 
underwater explosion, again with characteristic high-speed liquid jets formed upon 
collapse (Wilkerson 1989). 

The boundary-integral method has become a popular and successful technique for 
computing the motion of cavities when the fluid is considered as inviscid and 
incompressible, and the flow induced by the bubble’s motion as irrotational (Guerri, 
Lucca & Prosperetti 1981; Blake, Taib & Doherty 1986, 1987; Chahine & Perdue 
1988; Wilkerson 1989). The majority of these studies, however, have assumed that 
the bubble contains only the liquid vapour and that it exerts a constant pressure 
throughout the lifetime of the bubble. Experimental evidence indicates that this is 
not quite an appropriate description. Many high-speed photographic records of 
bubble collapse (Benjamin & Ellis 1966; Lauterborn & Bolle 1975; Vogel, Lauterborn 
& Timm 1989) reveal that the bubble rebounds and undergoes several oscillations, 
although in a form perturbed from a spherical shape. That this behaviour should be 
observed may be explained by supposing that the later stages of the collapse proceed 
so quickly that the liquid vapour does not completely condense. The rapid decrease in 
bubble volume causes the compression of this non-condensing gas and the resultant 
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high pressure causes the bubble to rebound. I t  is clear in the example of underwater 
explosion bubbles that this should occur, as the bubble contents consist primarily of 
the remnants of the detonation which are non-condensible. Indeed, much attention 
during WWII was focused upon the emission of finite-amplitude pressure pulses by 
the rebound of explosion bubbles, and their possible action as a secondary damage- 
causing agent. 

The presence of non-condensible bubble contents prompts the interesting 
speculation that the high pressure developed within the bubble upon collapse may be 
sufficient to arrest jet formation. In  this paper we address this question by 
undertaking a numerical investigation of transient cavity motion in which there is 
a quantity of non-condensible gas within the bubble. We utilize a boundary-integral 
method and employ an adiabatic gas law description of the bubble contents. Motion 
is considered in an axisymmetric geometry, and buoyancy forces and the presence of 
a nearby rigid boundary are the influences that perturb the bubble from spherical 
shape. It is found that the presence of a non-condensible gas will not arrest the 
formation of a jet, only delay it, with examples presented where the bulk of the 
growth of the jet occurs upon rebound. 

We further investigate the interaction between the perturbing agents of buoyancy 
and nearby boundaries. It is established that buoyancy induces jet formation 
directed in opposition to the gravitational acceleration, whereas the Bjerknes 
attraction of a rigid boundary causes jet formation directed towards it. By 
considering axisymmetric motion above and below a rigid boundary we may 
investigate how these effects positively and negatively couple and deduce qualitative 
principles with which to interpret the observed behaviour. This endeavour is assisted 
considerably by exploiting the Kelvin impulse and this concept is discussed. 

2. The mathematical description 
Suppose that a bubble undergoes some motion in a fluid and denote the domain 

occupied by the fluid as 51, with a51 its boundary. The bubble surface, S, is a subset 
of a51 and in the case where motion occurs in an infinite fluid S = a51. We denote by 
n the normal to a52, exterior to 52. We allow for the presence of a uniform 
gravitational field and choose a Cartesian set of axes, defined by the orthonormal 
basis e,, e,, e,, such that the gravitational acceleration is g = -ge,. 

We describe the fluid as inviscid and incompressible and the flow induced by the 
bubble’s motion as irrotational. A velocity potential, 6, is introduced so that the fluid 
velocity, u, is given as the gradient of the potential which itself satisfies Laplace’s 
equation in 51: 

u = V $ ,  VZ$=O. (1) 

On a52 appropriate boundary conditions are applied. There is no flow normal to a 
rigid boundary and at free boundaries the potential is assumed to be known. For 
most of the lifetime of a cavitation or explosion bubble the curvature of the bubble 
surface is insufficient to cause any appreciable effect upon the dynamics of the bubble 
via the action of surface tension. Hence surface tension is neglected in this 
investigation. Computations including this effect have been performed and the 
reader is referred to the work of Chahine & Perdue (1988) and Chahine (1990) for 
details. 

We employ an elementary description of the bubble contents. Studies of cavitation 
bubble dynamics have assumed that the bubble contents consist of the liquid vapour, 
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and that i t  exerts a constant pressure, pc ,  throughout the lifetime of the bubble. An 
explosion bubble contains the non-condensible remnants of a detonation, and there 
is evidence to suggest that cavitation bubbles would be better described by taking 
account of some non-condensible contents. We suppose that we can describe this 
non-condensing gas as ideal, and that on the timescale of the bubble oscillation there 
is negligible heat exchange with the surrounding fluid, so that the expansions and 
compressions of this gas are adiabatic. Hence we write the pressure, pb, exerted by 
the bubble contents as a function of the volume, V ,  via 

where the subscript 0 denotes initial quantities, h is the ratio of specific heats and we 
have allowed for the presence of some liquid vapour within the bubble. For the 
products of various explosives h is empirically determined. In this investigation we 
take h = 1.4. As a matter of terminology, in what follows we shall refer to cavitation 
bubble motion that described by a constant pressure within the bubble, and to 
explosion bubble motion that described by (2). 

Lengths are scaled with respect to the maximum bubble radius, R,, time with 
respect to R,(p/Ap)i and Ap = p a - p ,  is the pressure scale, where p is the density 
and p ,  is the hydrostatic pressure at the depth at which inception of the motion 
occurs. The Bernoulli equation is used to determine the evolution of free surfaces. 
The bubble surface, S ,  is a free surface and evaluating the Bernoulli equation here 
yields 

~ ~ / ~ t + ~ l V ~ l z + a ( ~ / ~ ) ~ + + z ( ~ - ~ o ) -  1 = 0, (3) 

where 6 = (pgRrn/AP)' (4) 

a = Po/AP ( 5 )  

is the buoyancy parameter and we call 

the strength parameter. Physically 6 corresponds to the ratio of the bubble half-life 
to the time it would take a bubble of radius R, to rise the order of one radius from 
rest due to buoyancy forces. It thus provides a measure of the strength of the 
buoyancy force. The strength parameter provides some measure of the magnitude of 
the initial partial pressure exerted by the non-condensible bubble contents. In  the 
case of an underwater explosion bubble this pressure is high and drives the oscillation 
of the bubble. For motion near to a horizontal rigid boundary it is convenient at this 
point to introduce y as 

Y = 5o/Rm, (6) 

where 5, is the distance away from the boundary a t  which inception of the motion 
occurs. y characterizes the Bjerknes attraction of the boundary and takes on positive 
or negative values according to whether the motion occurs above or below the 
boundary. 

We complete the description of the model with the provision of initial conditions. 
In the study of cavitation-bubble dynamics it is assumed that the Rayleigh equation 
(Rayleigh 1917) describing motion in an infinite fluid provides an approximate 
description of the earliest motion of the bubble. This is not unreasonable as during 
short intervals when the bubble is very small, the buoyancy force is negligible and 
the presence of nearby boundaries is little felt. Thus the bubble is initially supposed 
to be spherical and of some initial radius, R,. The corresponding initial time, to ,  and 
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potential on the bubble surface, q50, are determined from the Rayleigh equation. In  
accord with Blake et al. (1986) the initial conditions for a cavitation bubble are 

R, = 0.1, Qo = -2.5806976, to = 0.0015527. (7)  

The bubble surface at this time is moving outwards with a radial velocity of 
25.806976. 

In  the explosion bubble example, the presence of the non-condensible gas provides 
a much greater freedom in the choice of initial conditions. At the initial small radius, 
R,, the non-condensible gas is highly compressed and the large initial partial 
pressure, p,, drives the motion, in addition to any initial radial velocity imposed 
upon the system. We thus have the option of choosing a multitude of combinations 
of initial pressure and radial velocity, the assumption that the bubble is initially 
spherical being retained. This freedom of choice is superfluous due to the relative 
unimportance of buoyancy and boundary effects during the early phases of the 
motion. Consider the equation describing the motion in an infinite fluid of a bubble 
whose contents are described by (2). It is 

RR + = u ( R , / R ) ~ ~  - 1, (8 )  

where the above time- and lengthscales have been employed. The motion is purely 
radial and R denotes the radius. Equation (8) describes oscillatory motion so that 
given an initial non-zero radial velocity we may integrate (8) backwards in time to 
obtain a new initial radius and pressure (new value of a) corresponding to a zero 
initial radial velocity. For all except very small-amplitude radial oscillations the time 
over which this backwards integration must take place is negligible compared to the 
period of the oscillation, so that the motion over this time is little influenced by the 
presence of boundaries or the buoyancy force. 

Thus we suppose that the initial radial velocity of the explosion bubble is zero, 
with the motion driven from rest by the very high initial partial pressure po .  The 
initial potential on the bubble surface is equal to zero. The initial radius is chosen 
such that the maximum radius to which the bubble would expand in an infinite fluid 
is equal to one and this value is obtained from the solution of (8). 

3. The boundary-integral method 
We utilise the boundary-integral method of Kucera (1992) (following Blake et al. 

1986) to investigate the motion of explosion bubbles, whose internal pressure is a 
function of the bubble volume. Application of Green’s theorem yields the solution of 
Laplace’s equation in the domain Q as 

with 

The pointp is somewhere in the flow domain and a/& = n - V  is the normal derivative 
at the boundary. Q\aQ denotes the complement of af2 in 0 and af2 is supposed to be 
everywhere smooth. For motion in the neighbourhood of a rigid boundary an image 
term is added to the Green’s function so that al2 may be considered as the bubble 
surface alone, with the rigid boundary condition implicitly satisfied. 
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The principle of the method is as follows. A t  some time t, S and $ on S are known. 
Equation (9) is then a Fredholm integral equation of the first kind for the normal 
fluid velocity, a$/an, at the bubble surface. Solution for this quantity allows the fluid 
velocity, u, at the bubble surface to be determined. Letting X denote the position 
vector of some point on the bubble surface we may then integrate the equation 

dX/dt = U, (11) 

describing the motion of points on the bubble surface in the Lagrangian sense. The 
rate of change of $ following some fluid element at S is 

d$/dt = a$/at+IV$12 = ~ 1 V $ 1 z - - ( v o / V ) ~ - ~ 2 ( ~ - ~ o ) +  1, (12) 

a$/at having been eliminated using the Bernoulli equation. This equation is 
integrated simultaneously with (1 l),  giving # on S as a function of time. 

To solve (9) we employ a collocation method in an axisymmetric geometry. A set 
of n+ 1 nodes are chosen on the surface of the bubble, with the assumption of 
axisymmetry necessitating only the description of a curve in two dimensions. The 
surface of the bubble is represented by a cubic spline, constrained to pass through the 
node points. The spline parameter is the arclength, s, along the curve that is the 
bubble surface. If r and z respectively denote the radial and vertical coordinates of 
points on the bubble surface then these are locally cubic functions of s. The arclength 
and spline coefficients are determined iteratively using the technique developed by 
Kucera (1992) that yields the exact arclength along the curve. A consequence of this 
parameterization is that the spline functions satisfy 

(dr/ds)2+ (dz/ds)2 = 1. (13) 

In the computations presented here, 33 node points were used to define the bubble 
surface. We represent the value of $ over S using a cubic spline, parameterized with 
respect to s. The value of a$/an a t  node i is denoted by $i, and these quantities are 
unknown. If we represent on S linearly with respect to s then collocation of (9) 
at the nodes yields a set of linear equations for the @i that are solved by standard 
techniques. In carrying out the surface integral of (9) the integration over the 
azimuthal angle is performed analytically, yielding expressions involving elliptic 
integrals of the first and second kind. The integration over the arclength is performed 
numerically using Gauss-Legendre quadrature formulae. When the integrand is 
singular, the logarithmic singularity is subtracted and an appropriate quadrature 
scheme is utilized to complete the integration. For details concerning these aspects 
the reader is referred to the work of Taib (1985). Having evaluated the fluid velocity 
at  S equations (1  1) and (12) are integrated in time using a second-order Runge-Kutta 
scheme. 

The significant new feature of the results presented here is the computation of non- 
spherical bubble rebound, caused by the non-condensible bubble contents. The 
moment of rebound is characterized by very high fluid acceleration, as the direction 
of the bubble surface motion changes over a very short period of time. In  order to 
capture this fast motion we employ a variable time step 6t, chosen as 

(14) 

where A$ is some constant. With this definition the change in $ at each node is 
bounded above by A$ over the interval 6t. This formula, with the maximum 

6t = A$ 
maxs(BIV$l2 +a( V,/V)I\ + a21x - zoI + 1 )  ’ 
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evaluated over all the nodes defining the bubble surface, possesses the necessary 
features to enable us to capture bubble rebound with the computational effort 
somewhat optimized. When the fluid motion is fast the time step is reduced. 
Furthermore, when the bubble is contracted and V,/ V - 1 ,  then irrespective of the 
value of IVq5l the expression (14) yields very small time steps due to the largeness of 
a and this allows the rebound of the bubble to be numerically captured. For the 
computations presented here, Aq5 was chosen to be 0.05 although values up to 0.08 
give acceptable results. 

During the early attempts to  compute the rebound of non-spherical bubbles it was 
found that a sawtooth-type instability developed in the bubble shape in that region 
where the jet was about to form. As an initial attempt to overcome this difficulty the 
mesh was redefined after every time step so that the nodes were evenly spaced with 
respect to the arclength. This allowed the computation to proceed to a slightly 
greater time but did not prevent the development and rapid growth of this 
instability. Thus a smoothing scheme is employed and that chosen is the 5-point 
formula first used by Longuet-Higgins & Cokelet (1976) in their study of steep 
surface waves on water. The smoothing formula is applied every 5-20 iterations, this 
application only being essential when attempting to numerically capture rebound. 

To ensure that the application of smoothing does not alter the physics embodied 
in the mathematical model, the changes in kinetic energy, Kelvin impulse and bubble 
volume brought about by application of smoothing were evaluated. For a typical 
computation (that considered in $ 5 ) ,  during the time until the jet begins to form the 
relative changes per smoothing operation in kinetic energy, Kelvin impulse and 
volume are respectively less than 7 x and 2 x lop5. This period 
constitutes z 97% of the bubble lifetime. When the jet forms these changes are 
respectively less than 7 x 5 x and 1 x per smoothing operation. Since 
only about 200 iterations are required to compute the whole motion the smoothing 
operation is seen to conserve energy, momentum and mass to a high level of 
precision. Hence we are confident that  smoothing does not alter the physics 
underlying the mathematical description. 

2 x 

4. The Kelvin impulse 
The concept of the Kelvin impulse has been utilized to  interpret the behaviour of 

bubbles (Benjamin & Ellis 1966) and predict features of their motion (Blake & Cerone 
1982; Blake et al. 1986, 1987). The Kelvin impulse of a bubble is defined as 

I = p  #ndS, i 
and corresponds to the impulsive force that would have to be applied over the surface 
of the bubble to  generate the observed flow field from rest. I n  the context of the 
deformed, jet-pierced-bubble characteristic of cavity collapse, the Kelvin impulse 
and jet direction should be closely correlated. It is this postulate that  has been the 
basis for the work of Blake and co-workers (Blake & Cerone 1982; Blake et al. 1986, 
1987; Blake 1988) in which an approximate expression for the Kelvin impulse a t  the 
end of the bubble lifetime is obtained and proposed as giving an indication of the 
direction of the jet. 

The impulse changes in response to  the action of external forces, expressed as 

dI/dt = F, (16) 
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and this relationship is analogous to that between the momentum of a particle and 
the force acting on it. For flows in infinite domains (Blake & Cerone 1982) 

where Z,, denotes the boundaries of the flow domain, excluding the bubble surface. 
The first term represents the Bjerknes force exerted upon the bubble by the 
boundaries and the second term is the buoyancy force. By approximating the 
potential at the boundary Z,, using source-like terms, and using the Rayleigh bubble 
solution to approximate the strength of the source, the force F may be determined 
and integration of (16) over the lifetime of the bubble yields an approximation to the 
impulse a t  the time of collapse. For motion above a rigid boundary this value is 
(Blake 1988) 

(18) 

where T,  is the lifetime of the bubble and B is the beta function (Abramowitz & 
Stegun 1965). The impulse is scaled with respect to Rk(pAp)i. 

The interesting feature of (18) is the existence of a null impulse state given by 

I (%)  x (22/6x/9y2) [2y2SszB(+, $) -B(i,g)], 

yS = (B(& 3/2B(y, $))$ = 0.442, (19) 

for which physical parameters y and 6 the final impulse is approximately zero. It is 
at this state that the competing Bjerknes and buoyancy forces are approximately 
equal in their action. Since the Kelvin impulse is related to jetting phenomena, it is 
found in the case of cavitation motion that jetting is suppressed in the neighbourhood 
of the null impulse state and the bubble retains much of its spherical character as it 
collapses (Blake et al. 1986). 

This last observation is significant in view of the aims of this investigation. 
Previous studies of underwater explosion phenomena using a boundary-integral 
method (Chahine & Perdue 1988; Wilkerson 1989) have shown jets forming and 
completely penetrating the bubble upon the first collapse, with no qualitative 
evidence that the non-condensible bubble contents act to resist this. However, we 
propose that for collapse in the neighbourhood of the null impulse state, jetting will 
be suppressed sufficiently that the bubble may rebound prior to complete penetration 
by the jet. Thus the null impulse state will form an important part of our 
investigation. 

5. Collapse of non-spherical explosion bubbles 
Consider first a typical example of explosion-bubble motion. The motion 

commences at  y = - 2.0, the negative value indicating motion below the boundary 
at  z = 0. The buoyancy parameter is S = 0 so the only asymmetry in the flow field 
is due to the presence of the rigid boundary. The strength parameter is a = 100 with 
the corresponding initial radius equal to 0.1651. The bubble shapes at various times 
throughout the growth and collapse are shown in figure 1. We note that to a very 
good level of approximation the bubble remains spherical in shape as it expands and 
also during the early stages of the collapse.,As the collapse proceeds the rear side of 
the bubble becomes noticeably flattened and this perturbation from spherical shape 
grows rapidly to form the high-speed liquid jet that threads the bubble. The 
computation cannot proceed beyond the time that the jet impacts upon the far side 
of the bubble. If we consider that the flattening of the rear of the bubble denotes the 
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z - ~  -2  
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-3  -~ u 
- 1  0 1 - 1  0 1 

r r 
FIQURE 1. Successive bubble shapes for the growth and collapse of a bubble characterized by 
y = -2.0, 8 = 0, a = 100. The times corresponding to successive profiles are: (a) growth phase: 
0 (innermost), 0.0082, 0.0237, 0.0860, 0.4108, 1.0692 (outermost) ; (b) collapse phase: 1.7213 
(outermost), 2.0197, 2.0719, 2.0878, 2.0984, 2.1076, 2.1158, 2.1231, 2.1269 (innermost). 

beginning of jet formation, then inspection of the times corresponding to the profiles 
shown in figure 1 indicates that the jet forms and completely penetrates the bubble 
in about 2.5% of the bubble lifetime. 

We can consider the mechanism by which the jet is formed in a number of ways. 
In this case of motion in the neighbourhood of a rigid boundary, upon collapse fluid 
may be drawn preferentially from the side of the bubble furthermost from the rigid 
boundary. The increased mobility of the flow from this region causes that part of the 
bubble surface to collapse more quickly than other parts and form the jet. We 
consider the mechanism in an alternative manner after computing the pressure field 
in the fluid by making use of the Bernoulli equation, as has been done previously by 
Blake et al. (1986,1987). The pressure field in the fluid around the bubble at  the times 
t = 2.0197 and 2.1230 is shown in figure 2. At t = 2.0197 (figure 2a) the bubble is 
approximately spherical, the pressure inside the bubble is 1.08 and the computed 
pressure field is typical of that associated with an accelerating sphere. There is a peak 
of pressure located behind the bubble, with respect to the direction of centroid 
acceleration. As the bubble accelerates this peak value increases and drives the jet 
into the bubble. This is indicated in figure 2 (b )  where at t = 2.1230 the jet has pierced 
the bubble with the peak of pressure continuing to drive the fluid in the jet. The 
pressure within the bubble at  this time is 47.63. Thus we can say that for motion in 
the oeighbourhood of a rigid boundary the Bjerknes attraction of the boundary 
causes the bubble to accelerate towards it upon collapse, with the resultant peak of 
pressure that develops behind the bubble being the agent that drives the jet into the 
bubble. This latter view of the cause of jet formation is particularly useful when 
considering bubble collapse due to buoyancy forces alone. Upon collapse the 
reducing added mass of the bubble causes it to accelerate upwards causing the 
formation and rapid intensification of the pressure maximum behind the bubble, 
which is sufficient to drive a jet into the bubble. 

In  this example the behaviour of the bubble appears as documented for the 
collapse of cavitation bubbles, with no qualitative evidence suggesting that the high 
pressure developed within the bubble as the volume decreases acts to arrest the 
formation of the jet. We have postulated that in the neighbourhood of the null 
impulse state the bubble may rebound before jet penetration is complete. We 
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FIGURE 2.  The pressure field in the fluid computed for the motion illustrated in figure 1 a t  
times (a) 2.0197 and (b )  2.1230. 

proceed to investigate this matter by considering various regions of the physical 
parameter space. 

6. Variation of the buoyancy parameter 
We investigate that subset of the physical parameter space characterized by 

constant values of IyI and a. We consider motion above and below a rigid boundary 
and choose y = 1.5 with a = 100. Our aim is twofold. In the first instance, for y = 
1.5 the values of the buoyancy parameter chosen lie betveen 0 and 0.35 and this 
region of the parameter space includes the null impulse state, in which neighbourhood 
we expect non-spherical bubble rebound to occur. Secondly, for motion below and 
above a rigid boundary the buoyancy and Bjerknes forces will respectively act 
together and in opposition. It is of interest to investigate the features of the collapse 
that vary as these forces vary and determine qualitative principles describing this 
variation. 

The primary result is shown in figure 3, where the computed bubble shape is shown 
at the time when the jet completely penetrates the bubble, or when the bubble 
achieves a minimum of volume. The time at  which it occurs is given below each 
bubble shape. These results bear some similarity to the final shapes of cavitation 
bubbles computed by Blake et al. (1986). Consider the upper sequence, characterized 
by y = - 1.5, as 6 decreases from 0.35 to 0. In this case the buoyancy and Bjerknes 
forces are similarly directed. As 6 decreases, the time a t  which jet penetration is 
complete generally tends to decrease but this variation is negligible compared to the 
lifetime of the bubble. It appears that the lifetime of the bubble depends little upon 
the buoyancy parameter. As 6 decreases, the breadth of the jet decreases, as does the 
volume of the bubble at the end of its life. To assist in the interpretation of this 
behaviour we have computed the velocity of that point on the bubble surface that 
evolves into the jet tip, as a function of time, and we call this the jet velocity. Its 



146 J .  P .  Best and A .  Kucera 

I = 2.1807 2.1811 2.1816 2.1783 2.1779 2.1769 2.1765 2.1757 

' . 5 0 ~ 6 3 Q D W W W W  
I = 2.1848 2.1853 2.1854 2.1822 2.1767 2.1762 2.1757 2.1757 

0.35 0.30 0.25 0.20 0.15 0.10 0.05 0 XI 

FIQURE 3. Bubble shapes at  the time of jet penetration, or minimum volume, for a range of 
buoyancy parameters. The motion begins at  a distance of 1.5 above ( y  = 1.5) and below ( y  = - 1.5) 
a rigid boundary. The strength parameter is a = 100. 

- 1 o j  - 

6 = 0.30 
1 

10 

0 

10 

10.20 

FIQURE 4. Jet  tip velocity as a function of time for each of the motions considered in figure 3. The 
frames display this velocity for the cases (a) y = - 1.5 and ( b )  y = 1.5. In  cases where each curve 
is not individually labelled there is a systematic trend in the corresponding value of 8, between the 
extremes noted. 

variation for the bubbles currently under consideration is shown in figure 4 (a) .  The 
jet velocity data reveal a number of interesting features. In all cases the departure 
from spherical shape is signified by a rise in the velocity of that part of the surface 
where the jet will form, above the value expected for a spherical bubble. The larger 
the value of S the sooner this occurs. This is due to the large value of the buoyancy 
force coupling with the Bjerknes force to accelerate the bubble more rapidly as it 
collapses, causing a premature departure from spherical shape. If we consider the 
buoyancy and Bjerknes forces as agents perturbing the spherical shape then the 
magnitude of the perturbation increases with S, leading to premature collapse and a 
larger jet. Accompanying this behaviour is a final jet velocity that increases with 
decreasing 6 and a final Kelvin impulse that increases with 6. 

There appears to be some inverse relationship between the jet velocity and the 
breadth of the jet, although these quantities are not well defined. This qualitative 
inverse relationship bears a remarkable similarity to the inverse relationship between 
mass and velocity for a particle of given momentum in rigid-particle mechanics. This 
is not unexpected in view of the analogy between particle momentum and the Kelvin 
impulse. We remark, however, that the final values of the impulse are different for 
each of these examples and this must impose some limit upon the extent of the 
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FIGURE 5. Successive bubble shapes for (a) the collapse and (b) rebound of a bubble 
characterized by y = 1.5, 6 = 0.25, a = 100. 

r 

Z 

r 

analogy. We could perhaps proceed in quantifying this analogy by introducing 
mathematically precise quantities associated with the jet width and jet velocity and 
investigating their relationship with the Kelvin impulse. These quantities may be 
appropriate averages over the volume of the jet but it is not obvious how we should 
proceed in such an endeavour. We leave such an investigation for later attention. 

A further significant feature of the jet velocity ws. time data is what we shall refer 
to as the terminal velocity characteristic. The jet accelerates rapidly shortly after 
formation, but this acceleration subsequently slows and the jet tip velocity levels to 
some constant terminal value. That this should occur may be explained in a number 
of ways. Recall the local maximum of pressure that develops in the fluid behind the 
bubble, as it accelerates forward upon collapse. This causes the flow into the high- 
speed jet, but as the flow continues this maximum of pressure is relieved and the 
pressure gradient between this point and the bubble surface falls. As a consequence 
the fluid acceleration there falls to zero and the jet tip achieves a terminal velocity. 
From a global perspective, as the bubble collapses much of the fluid momentum 
manifests itself in the jet. Since only a finite amount of momentum may be 
transferred to the jet it cannot continue to accelerate after the transfer of finite 
momentum has occurred. 

Consider now the collection of bubble shapes for motion a t  y = 1.5 as S ranges 
between 0 and 0.35 (figure 3). In  this case the buoyancy and Bjerknes forces act in 
opposition and we note the transition in behaviour as S varies. In the case of small 
6, the Bjerknes attraction dominates and the jet is directed towards the boundary. 
As S increases, buoyancy assumes dominance and for large S the jet is directed 
upwards. A very interesting behaviour occurs at S = 0.25 where the buoyancy force 
and Bjerknes force are nearly equal in their effect. This set of physical parameters is 
in the neighbourhood of the null impulse state ; the computed value of the impulse 
at  the time shown is 0.0223. We consider this case in more detail. 

The collapse and rebound of an explosion bubble characterized by y = 1.5, S = 
0.25, a = 100 is shown in figure 5. The bubble remains approximately spherical 
during the growth phase. Owing to the approximately equal and opposite buoyancy 
and Bjerknes forces there is little translational motion of the bubble upon collapse, 
the result being that fluid is preferentially drawn in from the sides leading to an 
elongation of the bubble along the axis of symmetry. Buoyancy is slightly dominant 
in this case and the slight upwards acceleration upon collapse leads to the elements 
of a jet being evident at  minimum volume. In this neighbourhood of the null impulse 
state jetting has been suppressed sufficiently that the bubble rebounds, this phase of 
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FIGURE 7. Successive bubble shapes for the collapse of bubbles characterized by y = 1.5, 
a = 100, and (a) S = 0.23, ( b )  6 = 0.27. 

the motion being shown in figure 5 ( b ) .  As the bubble re-expands the jet continues to 
be driven into the bubble. The inwards radial motion of the fluid, about the centre 
of the bubble, is arrested at rebound but causes what we shall call upper and lower 
lobes of the bubble to develop. As a result of this inwards flow, the high pressure 
within the bubble at minimum volume preferentially causes the rapid re-expansion 
of the upper and lower parts of the bubble leading to the observed lobe structure. The 
jet tip velocity as a function of time for this example is shown in figure 6. The 
opposite coupling of buoyancy and Bjerknes forces gives rise to a very small initial 
perturbation in the bubble shape resulting in delayed jet formation and a thin jet. 
Accompanying this small amount of mass in the jet is a very high peak jet velocity 
achieved a t  around minimum volume. As the bubble re-expands, the jet velocity 
falls, although the jet continues to travel through the bubble. The rebound causes the 
bulk of the fluid surrounding the bubble to flow outwards, this outflow reducing the 
rate of flow into the jet, causing it to decelerate. 

Consider the behaviour for values of the buoyancy parameter of about 0.25. The 
collapse of an explosion bubble characterized by y = 1.5, S = 0.23, 01 = 100 is shown 
in figure 7 (a ) .  In this example the Bjerknes force slightly dominates the buoyancy 
force and the jet is directed towards the boundary. As the bubble collapses we note 
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the elongation along the axis of symmetry. Since the buoyancy and Bjerknes forces 
act in opposition, jet formation is delayed and the jet that forms contains a small 
amount of mass. Accompanying this is a very high jet velocity as evident from 
inspection of figure 4. We comment that the bubble achieves a minimum volume just 
prior to the time that the jet completely penetrates the bubble. The collapse of an 
explosion bubble characterized by y = 1.5, 6 = 0.27, a = 100 is shown in figure 7 (b ) .  
This example exhibits many of the features discussed above although in this case the 
buoyancy force is slightly dominant, with the jet that forms directed upwards. The 
interesting feature here is the pluming of the jet. As the jet is driven into the bubble 
the top broadens so that its radius there is greater than at its base. This appears to 
be a feature of explosion-bubble collapse in the neighbourhood of the null impulse 
state, in the case where buoyancy is slightly dominant. A similar behaviour has been 
observed experimentally for the motion of two-dimensional bubbles of constant 
volume rising slowly under the action of buoyancy forces alone (Walters & Davidson 
1962) and computations of this motion are in good agreement (Baker & Moore 1989; 
Lundgren & Mansour 1991). 

We remark that trends in the bubble behaviour upon collapse follow the general 
principles discussed for the case where buoyancy and the Bjerknes attraction act 
together. For a larger resultant perturbing effect jet formation is initiated early and 
a larger amount of mass is contained in the jet. This is accompanied by a smaller final 
jet velocity. About the null impulse state the initial perturbation in the bubble shape 
is small with narrow jets being formed and characterized by the highest speeds. In 
the neighbourhood of the null impulse state the non-spherical bubble has been shown 
to rebound. If we compare cases characterized by the same buoyancy parameter then 
there is a greater absolute value of the final Kelvin impulse in the case where the two 
forces act together, with a broader jet and small jet velocity, in accord with our 
general principles. In  the case where the forces are in opposition we have a smaller 
initial perturbing effect, giving rise to narrower jets of higher velocity. These 
examples for y = 1.5 demonstrate the small influence that the buoyancy parameter 
has upon the lifetime of the bubble, the variation over the range of 6 considered here 
being insignificant compared with the lifetime of the bubble and of the order of the 
computational error. 

7. Variation of the distance of inception from a rigid boundary 
Consider now the varying behaviour of a deforming explosion bubble as the 

distance of inception from a rigid boundary is varied. The bubble shapes at the time 
of complete jet penetration, or minimum volume, are shown in figure 8 over a range 
of values of y between 1 and 00, for a strength parameter a = 100 and buoyancy 
parameter of 6 = 0.20. Motion is considered both above and below a rigid boundary 
to display both the positive and negative coupling of the buoyancy and Bjerknes 
forces. For each of the bubbles depicted in this figure the jet tip velocity is shown as 
a function of time in figure 9. 

As for the results presented for varying 6 we note similar trends in the changing 
character of the collapse with varying y. The larger the resultant perturbing force, 
the broader the jet and smaller the final jet tip velocity. For motions characterized 
by the same absolute value of the physical parameters, in the case of motion above 
the boundary the perturbing force is smaller due to the opposite coupling of the 
buoyancy and Bjerknes forces, giving rise to a smaller jet with higher velocity. The 
terminal velocity feature is evident. For motion above the boundary we note the 
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FIGURE 8. Bubble shapes at the time of jet penetration, or minimum volume, for a range of 
distances of inception from a rigid boundary. The buoyancy parameter is 6 = 0.2 and the strength 
parameter is a = 100. Motion is considered both above and below the boundary. 

FIGURE 9. Je t  tip velocity as a function of time for each of the motions considered in figure 8. The 
frames display this velocity for motion (a) above and (b) below a rigid boundary. In  cases where 
each curve is not individually labelled there is a systematic trend in the corresponding value of y, 
between the extremes noted. 

transition from jet formation directed upwards to jet formation directed downwards 
as the relative strengths of the buoyancy and Bjerknes forces change. Consider the 
collapse and rebound of a bubble about the null impulse state. This is shown in figure 
10 for an explosion bubble characterized by y = 1.85, 6 = 0.20, a = 100. The 
significant features are much as for the rebounding bubble shown in the previous 
section, including the formation of upper and lower lobes. The rapid re-expansion of 
the lobes leads to a ring of very high surface curvature about the centre of the bubble. 
The thin jet also exhibits very high curvature during the later stages of the bubble's 
life. Beyond this time the computational scheme cannot proceed. In reality surface 
tension and pressure fluctuations within the bubble contents will break up this high- 
curvature surface. Especially significant in the case of explosion-bubble motion is the 
temperature of the bubble contents which may lead to a phase transition at  the 
bubble surface and provide a further mechanism for the breakup of high-curvature 
regions of the bubble surface. 

In  contrast to the negligible variation of lifetime with S noted in $6, here a 
systematic trend is evident in the lifetime of the bubble over the range of y. We can 
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FIQURE 10. Successive bubble shapes for (a) the collapse and ( b )  rebound of a bubble 

characterized by y = 1.85, S = 0.2, a = 100. 

explain this behaviour in terms of the mobility of the fluid. The ease with which the 
fluid between the bubble and the boundary may be displaced is dependent upon 
the geometry of the flow field. In  this example the geometry is characterized by y ,  the 
difficulty in displacing fluid during both expansion and collapse increasing with the 
proximity of the boundary. Hence the lifetime increases as y decreases and is quite 
independent of 6, although the early migration due to buoyancy forces may have 
some minor influence. 

8. Discussion and conclusions 
The strength parameter gives some measure of the amplitude of the radial 

oscillations of a bubble. The smaller its value, the smaller the amplitude of the 
oscillations and consequently the radial fluid velocities upon collapse are smaller. 
Thus in the regime of small strength parameters the high pressure created within the 
bubble upon its contraction may be sufficient to delay the formation of the jet, 
allowing the bubble to rebound in connected form. We consider an example of 
bubble motion characterized by a small value of the strength parameter. The 
collapse and rebound of a bubble characterized by y = 00, 6 = 0.15 and a = 10 is 
shown in figure 11 and the vertical scale is arbitrary. The initial radius is 0.3804. 
Since it is the reducing added mass of the bubble upon collapse that gives rise to the 
rapid acceleration phase that precipitates jet formation, the relative smallness of the 
change in added mass over the oscillation period of the bubble in this example gives 
rise to a smaller upwards acceleration upon collapse, so that only the elements of a 
jet are evident at rebound. As the bubble rebounds the jet continues to travel into 
the bubble, the reducing pressure within the bubble assisting in this endeavour. 
Despite the formation of a jet, the bubble retains much of its spherical character. 

We consider here a number of other examples of bubble motion that are of interest 
and remark upon some of the implications of the results presented in this paper. We 
have postulated that in the neighbourhood of the null impulse state non-spherical 
bubbles should rebound. The results presented in this paper have demonstrated this 
but only for a strength parameter of 100. The behaviour that occurs in the 
neighbourhood of the null impulse state for increased strength parameters is of 
interest. We consider two further examples for a strength parameter of 1000. The 
example shown in figure 12 (a) is of the collapse of a bubble characterized by y = 2.0 
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(a )  y = 2.0, 6 = 0.1948, and ( b )  y = 1.0, S = 0.33. 
Successive bubble shapes for the collapse of bubbles characterized 
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(a )  y = 2.0, 6 = 0.1948, and ( b )  y = 1.0, S = 0.33. 
Successive bubble shapes for the collapse of bubbles characterized by a = 1000 and 

and S = 0.1948, with this value of S determined so that the bubble is close to the null 
impulse state. The initial radius is 0.0748. The significant feature is that both upper 
and lower jets have formed in this case. Note that the lower jet is broader than the 
upper jet. In this case the fluid speed upon collapse is so high that both jets penetrate 
the bubble sufficiently that the bubble does not rebound in connected form. 

Consider the further example characterized by y = 1 and 6 = 0.33, as shown in 
figure 12 ( b ) ,  with the value of 6 again determined such that the bubble is near the null 
impulse state. The behaviour in this case is very different. Owing to the close 
proximity of the rigid boundary, fluid cannot be easily drawn in from near to the 
rigid boundary and jet formation at the base of the bubble is resisted. As a 
consequence fluid is preferentially drawn in radially leading to the formation of 
upper and lower bubble lobes. Although the fluid is more mobile away from the rigid 
boundary, the formation of a jet here would lead to a significant value of the impulse, 
but this cannot occur in this neighbourhood of the null impulse state. After the last 
time shown in this figure the bubble will split to form two bubbles and these bubbles 
may possibly be threaded by jets that originate from the contact point. The 
formation of such a lobe structure upon collapse has been experimentally observed 
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for motion near a compliant surface (Gibson & Blake 1982) and between parallel rigid 
boundaries (Chahine 1982), in the case where the bubble is in the neighbourhood of 
the null impulse state. 

The results for rebounding bubbles, although computed using an incompressible 
description, have implications for the emission of pressure pulses upon rebound. It 
has been proposed (Shiffman & Friedman 1944) that such emission will be enhanced 
in the case where the buoyancy and the Bjerknes forces are almost equal and 
opposite. The results of this investigation have demonstrated that in this case the 
bubble can preserve much of its spherical character about the time of rebound. In  the 
bulk of cases jet penetration occurs before the bubble rebounds, with kinetic energy 
then becoming bound in the vortex ring structure which then evolves. In  the case of 
motion in the neighbourhood of the null impulse state, however, for not too large 
values of the strength parameter, it is evident that the bubble rebounds before the 
jet has completely penetrated it. We might suppose that in this case the emission of 
acoustic energy at  rebound will be enhanced, but such a speculation must be 
investigated either experimentally or computationally b a solution of the equations 

explosions occurring near the ocean floor. 
of compressible flow. Such an investigation has practical ny mplications for underwater 
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